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Abstract

- In applying active-set methods to sparse quadratic programs, it is desirable to utilize existing
sparse-matrix techniques. We describe a quadratic programming method based on the classical
Schur complement. Its key feature is that much of the linear algebraic work associated with an
entire sequence of iterations involves a fixed sparse factorization. Updates are performed at every
iteration to the factorization of a smaller matrix, wluch may be treated as dense or sparse.

The use of a fixed sparse factorization allows an 4off-the shelf ”"§pa.rse equation solver to be
used repeatedly. This feature is ideally suited to problems with structure that can be exploited
by a specialized factorization. Moreover, improvements in efficiency derived from exploiting new
parallel and vector computer architectures are immediately applicable.

An obvious application of the method is in sequential quadratic programming methods for
nonlinearly constrained optimization, which requxre solution of a sequence of closely related
quadratic programming subproblems.” We discuss some ways in which the known relationship
between successive problems can be explonted are Aased AR K '
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1. Background on Quadratic Programming 1

1. Background on Quadratic Programming

1.1. Statement of the problem. The topic of concern is the quadratic programming (QP)
problem of minimizing a quadratic objective function subject to linear constraints on the variables.
Quadratic programs may be stated in several (equivalent) forms. We shall consider primarily
quadratic programs in the following standard form:

minimize ¢’z + JzTHz
ek (1.1)

subject to Az = b, (<zr<u,

where the Hessian matrix H is symmetric and A is m x n. Components of £ and u may be taken
as —oc and +oo if no bound is present. We assume throughout that A has full row rank. The
constraints Az = b are called the general constraints of (1.1). We define the (linear) function
g(x) as ¢ + Hz, the gradient of the quadratic objective function.

The term “standard form” refers to the constraints in (1.1), and means that the only in-
equality constraints are simple bounds on the variables. (Section 6 treats some of the issues that
arise with alternative formulations.) In much of our discussion, we shall treat all the variables of
(1.1) uniformly. On some occasions, however, the “original” variables of a quadratic program will
be distinguished from its “slack” variables. A quadratic program will contain slack variables if its
“natural” formulation includes general inequality constraints. For example, a general inequality
constraint afx > §; is replaced by the equality constraint a;r.r + s; = B3, and the standard-form
version of the problem includes an additional slack variable subject to the bound s; < 0. Slack
variables have many special features; one of particular importance is that they do not appear in
the objective function. This paper is concerned only with problems in which the Hessian matrix
H in the original variables is positive definite. The indefinite case will be treated in a forthcoming
paper.

Our interest in sparse quadratic programs arises in large part from the desire to apply
sequential quadratic programming (SQP) methods to large nonlinearly constrained problems. In
an SQP method, each iteration involves solution of a quadratic programming subproblem, which
itself must be solved by an iterative procedure. An important feature of these subproblems is
that information from each can be exploited to solve the next more quickly, to the extent that
later subproblems usually require only a single iteration (see Gill, Murray, Saunders and Wright,
1985). Thus, the first QP iteration comprises a substantial proportion of the total effort, which
implies that initialization of the QP algorithm is just as critical as subsequent iterations.

Sections 2-5 describe a new method (the Schur-complement or SC method) for quadratic
programming. Before giving details of the SC method, Section 1.2 introduces some notation, and
Section 1.3 gives a condensed overview of active-set quadratic programming methods.

1.2. Notation. The proposed method is iterative, and we usually consider a single (typical)
iteration. Unbarred and barred symbols will be used to denote quantities associated with itera-
tions k and k + 1. The only exception is the use of the suffix “0” to denote quantities associated
with the first iteration.

We shall make extensive use of properties of the inertia of a matrix L', denoted by In(h’),
which is an integer triple («,/3,v), where a, 3 and 7y are the numbers of positive, negative and
zero cigenvalues of '
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A Schur-Complement QP Method

Given a symmetric matrix
) (M NT)
Kk = R
N G

with A nonsingular, the Schur complement of M in K will be denoted by K'/M, and is defined
as

K/M=G-NMNT,

We sometimes refer simply to “the” Schur complement when the relevant matrices are clear. (For
further discussion of the Schur complement, see Cottle, 1974.)

1.3. Background on active-set methods. The Schur-complement method is a primal-
feasible active-set method. For an overview, see, e.g., Fletcher (1981). Each iteration has the
following general structure: given the current iterate z, the next iterate is defined by

I=1zc+ap, (1.2)

where the vector p is the search direction, and the nonnegative scalar « is the steplength. An
initial feasibility phase is performed to find a point that satisfies the constraints of (1.1) (see
Section <), and all iterates are thereafter constructed to retain feasibility.

A major question in solving (1.1) is the identification of the active set of constraints, namely
tlie constraints that hold with equality at the solution. Because (1.1) is in standard form, the
active set must contain the general constraints, plus the set of variables that lie on one of their
bounds at the solution. An active-set method maintains an estimate of the active set (called the
working set), which is a linearly independent set of constraints that are satisfied exactly at the
beginning of each iteration. The matrix of coefficients of constraints in the working set will be
denoted by Ay, and always includes the equality constraints. Thus, a typical working set has

the form
A
AW:(G)'

where I, contains rows of the identity corresponding to variables currently on their bounds. The
constraints in the working set are (temporarily) treated as equalities during the current iteration.
The search direction p is defined as the solution of the following equality-constrained QP:

. e . T 1 'I‘
minimize g'p+ sp'Hp

PER" ? (1.3)
subject to A,p =0,

where g denotes g(z). The constraints A, p = 0 ensure that constraints in the working set remain
unaltered by any move along p. In particular, the components of p corresponding to bounds in
the working set (“active” bounds) must be zero. The solution of (1.3) is the step from z to
the minimizer of the quadratic objective function of (1.1), subject to treating the working set as
equalities. The optimality and feasibility conditions for (1.3) are expressed by the linear system

T -
()0 -0) (0
Aw I

where g is the Lagrange multiplier vector for the constraints of (1.3).
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1. Background on Quadratic Programming s

Almost all active-set feasible-point methods for convex quadratic programming are mathe-
matically identical in the sense that, under certain conditions, the same sequence of iterates is
generated (see Djang, 1980, and Best, 1984). Differences in efficiency and numerical stability
arise from the techniques chosen for solving (1.4). Null-space methods are based on computing
either implicitly or explicitly a (nonunique) matrix Z whose columns span the null space of Ay .
The solution of (1.4) can then be computed as p = Zp;,, where p, satisfies

ZTHZp, = -27y. (1.5)

The matrix ZT H Z is called the projected Hessian. We stress that the projected Hessian depends
on the choice of A, as well as on the representation of Z.

If p is nonzero, two situations are possible. The point £+ p may violate one or more currently
inactive bounds. (In this case, A, cannot be the correct active set.) Feasibility is retained by
determining the maximum nonnegative step a < 1 such that  + ap is feasible. The bound that
becomes satisfied exactly at z + ap is then “added” to the working set for the next iteration by
adding a row of the identity matrix to Ay .

Otherwise, r + p is feasible, and # = = + p. Since p is the step to the minimizer of (1.3), it
must hold that ZT¢(#) = 0, which implies that g(Z) = AT u for some Lagrange multiplier vector
u. If the components of u corresponding to active lower bounds are nonnegative, and those
corresponding to active upper bounds are nonpositive, then £ is the (unique) solution of (1.1).
Otherwise, there is at least one component with the “wrong” sign, which means that deleting
the corresponding constraint from the working set will produce a feasible direction of descent for
the objective function. (The same interpretation applies if p = 0: either x is optimal for (1.1),
or a constiraint can be deleted from the working set.) When a bound constraint is deleted, the
associated variable is said to be “freed” from its bound, and one of the rows of I, is removed
from A, .

The standard convergence properties of this algorithm are summarized by the following two
theoreins, which are stated without proof (see, e.g., Gill and Murray, 1978; Fletcher, 1981).

Theorem 1.1. (Linear independence of the working set). If the initial working set is chosen so
that Ao has full row rank, and if Awp = 0 at all subsequent iterations, then: (i) every working
set has full row rank; and (ii) the projected Hessian is positive definite at every iteration. §

Theorem 1.2. Assume that the feasible region of (1.1) has no degenerate vertices, i.e., the set
of constraints defining every vertex is linearly independent. Then the feasible-point active-set
method described above will terminate at the unique minimizer of (1.1) in a finite number of
iterations. |

If degenerate vertices exist, additional procedures should be included in the algorithm to

:_: prevent cveling, i.e., making an infinite number of changes in the working set without moving
N fromn the enrrent point. Recent techniques for treating degeneracy are described in, for example,
,f-'\- Fletcher (1985), Busovaéa (1985}, Dax (1985), Oshorne (1985), Ryan and Osborne (1986), and
Lo Gill et al. (1987h).

o 1.3. Special properties of the standard form. So far, we have discussed the role of

: the matrix A, without particular attention to the computational advantages that arise when
..‘ the problem is in standard form. Standard form allows the nonzero (“free™) components of the
1}
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4 A Schur-Complement QP Method

search direction to be computed using a matrix whose column dimension is equal to the number of
free variables (rather than the total "umber of variables). To formalize this idea, let n,, denote
the number of free variables (i.e., corresponding to bounds not in A4, ), and let the subscript
“FR" denote the corresponding components of a vector or matrix. For example, A,z denotes
the m X npg submatrix of columns of A corresponding to free variables. Similarly, the subscript
“Fx" means the components corresponding to fixed variables (i.e., those whose bounds are in the
working set). (We shall henceforth switch freely between the terminologies of “working sets™ and
“free/fixed variables”. In general, the main iteration will be described in terms of changes to the
working set because the structure of the constraints does not affect the algorithm at that level.)
The vector pr, satisfies the linear system

T _ —
(Hm Am) ( pF‘R) - 1\.( Prn) _ (gFR) ’ (1.6)
Apg m T

where 7 denotes the vector of multipliers for the general equality constraints. The reduced
gradient vector A for the fixed variables (i.e., the Lagrange multiplier associated with active
bounds) may be computed as A = §,, — AT, x, where § denotes g(z + p).

Equation (1.6) is called the Kuhn-Tucker system or just the KT system. The following lemma
characterizes the relationship between the eigenvalues of ' and the eigenvalues of the projected
Hessian ZTH Z.

Lemma 1.1. Let M be an n x n symmetric matrix and N an m x n matrix of full row rank. If
Z is an n X {n — m) matrix such that NZ = 0, then

M NT T
In ( v ) =InZ'MZ)Y+ (m,m,0).

Proof. For a proof. see Gounld (1985). R
The inertia of A can be deduced by applying Lemma 1.1 to (1.6) and invoking Theorem 1.1
to show that the projected Hessian is positive definite; thus, we conclude that In(A") = (n,m,0).

1.4. Special features of large quadratic programs. Techniques for obtaining a null-space
basis Z explicitly or implicitly have been extensively studied recently, with particular reference to
continuity (see, e.g., C'oleman and Sorensen, 198.1; Gill, Murray, Saunders, Stewart and Wright,
19%5). When A is dense. Z is usually computed directly from a @ R factorization of A. When A
is sparse, however, known techniques for obtaining an orthogonal and sparse Z may be expensive
in time and storage, although some recent approaches appear promising (see, e.g., Coleman and
Pothen. 19%6: Gilbert and Heath, 1986).

The representation of 7 most commonly used in sparse problems is called the reduced-
gradient form of Z., and is obtained as follows. The columns of Ay are partitioned so as to
identify explicitly an m x m nonsingular matrix B (the basis). Assuming that B is at the “left”
of Ay, we have

""f'R = (]} .S'). (1.7)

{In practice, the columns of B may occur anyvwhere.)

-

w




2. The Schur-Complement Quadratic Programming Method 5

When Ag, has the form (1.7), a basis for the null space of A,y is given by the columns of
the (non-orthogonal) matrix Zy, defined as

_B-! VA
ZFH =( BI S), SO tha-t Z=( gn) . (1.8)

Furthermore,
ZzLH,..Z.,=2THZ.

Let n; = n — (m + ngx), so that Z; has n; columns. The formn of (1.8) means that matrix-
vector products ZTv or Zv can be computed using a factorization of B (typically, a sparse LU
factorization; see Gill et al., 1987a), and Z need not be stored explicitly.

For large problems, the projected Hessian ZT HZ associated with the solution of (1.6) will
generally be much denser than H and B. If n; is small enough to allow the storage of a dense
matrix of dimension n, X n, the null-space basis provided by (1.8) is very effective in methods
that approximate ZT HZ (see Murtagh and Saunders, 1978).

2. The Schur-Complement Quadratic Programming Method

When A and H are large and sparse, a single system of the form (1.6) can be solved reliably
and efficiently with the sparse matrix package MA27 (see Duff and Reid, 1982; Duff, Erisman
and Reid, 1986). In an active-set QP method, however, a sequence of such systems must be
solved, each differing from the preceding by a single row and column. In a method based on a
straightforward interpretation of (1.6), the search direction p and multiplier 4 would be computed
from a KT system that varies in composition and size as the working set changes. In contrast, we
now show that the special nature of these changes allows us to define a QP algorithm in which
the solution of (1.6) may be obtained during k successive iterations using a fixed factorization of
the initial KT system, and a factorization of a smaller matrix of (at most) order k.

2.1. Computation of the search vector and multipliers. To illustrate an iteration of the
Schur-complement method, we first consider an example with 4 variables and a single general
constraint, where bounds 2 and 4 are in the initial working set. Thus, p; = py = 0, and the initial
KT system (1.6) is

hiy hia an -Mn 0
hia has ars -3 | =1]93|. (2.1)
a;; a3z 0 ™ 0

At the next iteration, suppose that the first variable is to be fixed on a bound, so that p; = 0.
It is easy to verify that p satisfying (1.6) for the revised working set satisfies

hi hya agy

1 - 9
h]:} ’1.33 a3 0 7K1 _ g3 , (22)
an a3 0 0 m 0
1 0 0 0 A 0

where Ay is the reduced gradient for the newly fixed variable.
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6 A Schur-Complement QP Method

If, on the other hand, variable 2 is to be freed from its bound at the next iteration, the
desired p satisfies

hy1 hyz an hia —p 7
his haz a3 has —P3 _ g3 (2.3)
a1 a3 O a2 m 0
hiz  haz ape has P2 92

The general rule is that the previous KT system is bordered by a row and column of the
identity when a variable is fixed, and by the free elements of a row and column of // and a column
of A when a variable is freed.

The above process can be repeated in an obvious way over a sequence of iterations. Let
zg denote the initial point of the sequence, iy the KT system at zg, and ng the number of
free variables at xg. Assume that k changes to the working set have taken place since Iy was
factorized. Let f denote an {(ng + m)-vector whose first no components are the components of
the current gradient corresponding to the free variables at xo. and whose remaining m elements
are zero. Let the k-vector w be defined as

v = {g,(:x) if 25 was freed at iteration j;
0 otherwise.

Note that both f and w depend on the current iterate z.
After k iterations, the symmetric bordered system to be solved is of dimension at most ng +£,

and has the form Ko U f
10 y
— , 2.4
(UT V) (z) (w) (24)

where U is ng x k and V is k x k. The j-th column of U is a column of the identity if a variable
was fixed at the j-th iteration; otherwise it contains elements from H and A, as described above.
The nonzero entries of V are elements of H. (If no variables have been freed, U contains only
columns of the identity and V is zero.)

The vectors y and z must be “unscrambled” to obtain p, ¢ and A. The first ng components
of y are the elements of —p corresponding to the free variables at zo. The remaining nonzero
elements of p and the reduced gradients for the newly fixed variables are found from z as follows:

A, if z, was fixed at iteration j;
z; =
g —ps if z, was freed at iteration j.

Since (2.4) (in general) increases in dimension by one at every iteration, it might appear that
there is no benefit from this approach. However, the key point is that (2.4) can be solved using
factorizations of Kg and C, the k x k Schur complement of Ky:

C=V-UTK;'U (2.5)

(see, e.g., Bisschop and Meerhaus, 1977, 1980; Gill et al., 1984). The following equations are
solved in turn:

Kov=f (2.6a)
Cz=w-UTv (2.6b)
Koy=f-U-=. (2.6¢)
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2. The Schur-Complement Quadratic Programming Method 7

Thus, the work required to perform a QP iteration is dominated by two solves with kg and one
solve with C. If k is small enough, dense QR or LU factors of C may be maintained. To exploit
symmetry, the symmetric indefinite factorization (see Section 5) must be used. Each of these
factorizations can be updated efficiently and in a numerically stable manner to reflect changes in
the working set; see, e.g., Gill et al. (1974), Gill et al. (1987a) and Sorensen (1977). In all cases,
the numerical stability of (2.6) depends largely on the condition of Kj.

Each change in the working set results in addition of a new row and column to C. To show
this, consider a single change in the working set, and write the associated KT system as

Ko U _ - |4
(L_;;l 17)’ where U =(U u) and V=(,,T :) (2.7)
(The definitions of u, v and o depend on the nature of the change in the working set.) The new
Schur complement C for {2.7) is given by

o - V v Ut
C=V-UTK;'U = ) - ( ) Kg'(U . 2.8
l \0 < UT o UT ‘O ( u) ( )
Comparison of (2.7) and (2.5) reveals that the Schur complement is bordered by a single row and
colunmn:
_ C t
C = (tT 7) , (29(1)
where
Kog = u, t=v-UTg and 7y =0-uTq (2.9b)

Note that a solve with A’y is needed to update C.

The dimension of (' need not increase if a variable returns to its original status during the
sequence of iterations. For example, suppose that a given variable is fixed at the initial point,
subsequently freed, and then later fixed again at either the same or opposite bound. (The same
comments apply if a variable is originally free, and then fixed and freed again.) To effect the
second change in the working set, the dimension of C can be reduced by one, by simply removing
the columin of { associated with the first change and then modifying C to “undo” the first update.
(It is easy to show that deleting a column from U is equivalent to deleting a row and column
from ()

In Section 5.2 we identify the special relationship of the Schur complement to the projected
Hessian in certain cases. It is therefore of interest to know the inertia of the Schur complement,
which is characterized by the following lemma.

Lemma 2.1. Consider an iteration of a feasible-point active-set method in which p and yu are
computed from (2.6). If iy of the fixed variables were originally free at zo, and irg of the free
variables were originally fixed at xg, then

]ll((') = (iFRv ir‘x-O)~

Proof. The berdered natrix (2.1) may be permuted (symmetrically) to a matrix Al of the form

G AT kT
M=1]A
I
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“ 8 A Schur-Complement QP Method
fa

K5y
o™ where E is formed from iy, rows of the identity matrix. The eclements of (¢ and A are formed
A from variables in two categories: those that were free at ry (and therefore in I'g) and those that
e were freed in subsequent iterations. Let v denote the dimension of (.

.;}_ The inertia of (' (2.9) after a single change in the working set is given by

o ) ,

X, In(C) = In(C") + In(C"/C),

{

o '

e and we may also write
'\- In(C/C) = In(M/AM) = In(AM) - In(M).
A5 . -
.':l‘. Since the projected Hessian matrices ZTH 7 and ZT H 7 are positive definite, Lemma 1.1 implies

that

__-. In(M) = In(M) = (V. m+ irx.0) — (. m + ipx,0).
; ::: If M is expanded by fixing a variable on its bound, the dimension of G remains the same, but £

-::' is expanded by a single row (a coordinate vector). Therefore, v = v, ipx = ipx + | and

L]

In(C) = In(C) +(0,1,0).

-

Similarly, if a variable is freed from its bound, v = v + 1, Ip, = tpx and

In(C) = In(C) + (1,0.0).

{

W The desired result follows by applyving the arguments above to each expansion of the Schur
::. complement. 1§

l.\'.

:; 2.2. Refactorization. As the dimension of C grows, the work needed to solve (2.6) increases,

as does the required storage. It is therefore necessary to “restart” at a “new”™ zg, and to fac-

T

torize the current KT system from scratch (as in linear programming, where the current basis is

-‘:\ refactorized.)

:_“ Typically, the dimension of (' is allowed to reach a specified limit (say, 100) before refactor-
iz ization. If the QP is a “later” subproblem in an SQP method, the solution is likely to be found
SN before refactorization is required. The exact point at which refactorization becomes worthwhile
L depends on the problem. In general, the decision to refactorize is guided by considerations similar
n:-:: to those in the simplex method for linear programming-—i.e., it is probably desirable to refactorize
.",.-f: when the cost of an iteration exceeds an average figure determined by amortizing the cost of the
_:::j initial factorization over a number of iterations. Refactorization may also be mandated by a lack
' of starage.

Refactorization provides an opportunity to check for any possible deterioration in feasibility

throngh the accumulation of rounding errors, by computing the row residuals b — Azg for the
general constraints, If zg is unacceptable because of large row errors (i.e., large residuals in the
general constraints), one or two steps of iterative refinement may be helpful (see, e.g., Wilkinson,
196G5; Biorek, 1987). Unfortunately, iterative refinement can cause some of the variables to violate
iheir bounds. It is therefore essential for any application of iterative improvement to include a
procedure for restoring feasibility with respect to the bounds (see Section 4). Because of rounding
errors, the possibility of eycling during this process cannot be completely eliminated. For example.
the algorithim conld cycle forever between points that alternately violate the bounds and general

T e e o e e T et R0 |
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o 3. Avoiding a Solve with Ko 9
1

constraints. However, the changes to the variables caused by refinement tend to be small, and
FR cycling is unlikely.

% Ill-conditioning in Ay may lead to serious error in the computed solution of the bordered
Ly system (2.4). However, as each new variable is fixed on its bound, the KT system may become
[ better conditioned and merit refactorization. In some circumstances, refactorization can be post-

poned by applying iterative refinement on both K¢ and C whenever Ap has drifted away from
zero. (This form of iterative refinement is unlikely to cause loss of feasibility with respect to
: § the bounds.) Another alternative is to use deflated block elimination (see Chan, 1984; Chan and
o Grossi, 1985).

'

R
v 3. Avoiding a Solve with K
gy . . . o

,.:j When solving (2.4), the calculations can be rearranged so that only one solve with Ky is needed
& at every iteration (in contrast to the two solves in (2.6)). The “trick” is to define the right-hand
k- side of (2.4) so that certain components do not change. This can be accomplished by computing
‘ the step ¢ from zq to the minimizer of (1.3), rather than the step p from z, i.e., q satisfies
":‘ z0+q=x+p'
oo

-;‘ To illustrate this process, we reconsider the four-variable example of Section 2.1. Suppose
Tt that the next iteration involves fixing variable 1 at its lower bound ¢;. To make the first component
‘ of 5 + ¢ equal to £;, ¢ must satisfy

Y
: *'-4! h h a 1

23 u hz an -q g1(o)

Y his hsz a3 | O -3 | _ | 93(20)

L’j a1 a3 0 0 T 0 ’

) 1 0 0 0 AL (zo — n

: where g(ro) denotes the quadratic objective gradient at zo. It is easy to verify that the first
: component of zg + ¢ is given by
," i

¢ (zo+ ¢ = (zo)1 + @1 = (z0)1 — (o — 1 = b,

o as required.
ﬁ‘:?‘ On the other hand, if variable 2 is to be freed at the next iteration, then ¢ satisfies

I' hiy hia an hy2 - g91(zo)

A

o) his has a3z | hos -g3 | _ | 93(20)

}‘ ':.‘; ayjy ai3 0 (Y] m 0
12.,‘ ‘ hiz k2 ar2 | ha2 ks 92(20)

":'f?::ff- . , o

-ty I'o carry out this strategy, let fo denote the vector f from Section 2.1 evaluated at zo, and
;:c‘:;;:;"::} let the k-vector w be defined as
sl tly . . . D
}2:‘ :j:&g ' { (o — x), if x, was fixed at iteration j;

EREN & PO ! = . . . .

" : / gs(xo) if 2, was freed at iteration j.

o PN T, O AT AN AN WA N AN o F et
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10 A Schur-Complement QP Method

The value (rg — r), is defined as w; when variable s is fixed at iteration k because z, will then
equal ¢, or u, (depending on which bound is in the working set).
In general, given fo and w, the search direction and multiplier vector may be found from the

solution of
ho U Y fo
, ) = . 3.2
(Ur V)(z) (w) (32)

Examination of (2.6a) shows that the right-hand side associated with (3.2) is constant, so that
the solution of Kgrg = fp needs to be computed only once, at the first iteration. Thereafter.
(2.686) is simply

Cz:=w-UTy.

Only one oi the properties mentioned in Section 2 does not apply to this modified iteration.
The exception occurs when a variable moves from one bound to its “opposite” buund. In this case,
it is not possible to decrease the dimension of the Schur complement and maintain a constant
vector fy, since deleting the column of I/ has the effect of fixing the variable at the original bound
instead of the “new™ bound. To allow for this special case, the Schur complement is expanded
as if the variable had originally been free at xy. This modification is a special case of (2.9) with
the values u = 0 and v = e,, where s denotes the iteration at which the variable became free,
thereby adding the s-th row and column to ('. The new Schur complement is given by

- C e
C—(ef )

and it is not necessary to compute ¢, ¢ or 4 in (2.9).

4. Finding an Initial Feasible Point

In order to apply the active-set algorithm described in Section 1.3, a feasible starting point is
necessary. In the dense case, problem (1.1) is often solved in two phases. The first (the feasibility
phase) finds a feasible point by minimizing the sum of infeasibilities; the second (the QP phase)
minimizes the quadratic objective function in the feasible region.

In a nuli-space method for large quadratic problems, the following procedure can be used
to find a feasible point. Given a basis B (a nonsingular m X m submatrix of A), a point z,
can computed such that Azg = b, and then tested for feasibility with respect to the bounds. If
some of the bounds are violated, a direction can be computed that strictly decreases the sum of
hound violations, yet remains “on” the general constraints. Once a variable satisfies its bounds,
it is not allowed to become infeasible in subsequent iterations. In a typical null-space method,
both the feasibility and QP phases use the same factorizations, and the two-phase nature of the
algorithm is reflected by changing the function being minimized from the sum of infeasibilities to
the quadratic objective function (see Gill, Murray, Saunders and Wright, 1985).

Unfortunately, this approach will be inefficient within a QP algorithm based on direct solution
of the KT system, since the factors of B cannot be used to initiate the QP phase. The inefliciency
is even more serious when the QP is a “later” subproblem within an SQP method, since a feasible
point for the QP can usually be obtained directly from knowledge of the active set in the previous
subproblem. If no iterations are required to find a feasible point, the effort required to factorize

w e W W W T W T T WY WYY W WY W eV Y W ¥ gy T v

]

.:4.'.‘4' ~alte -{\(\ e ;. AT A AN L O
Y _-MQ;:,ﬁamimhﬁ-mﬁmiMmﬂm



S

»
v -

-
-
-

R

o= -

o &l 11.. - -
27 SR &5

o
%3

4. Finding an Initial Feasible Point 11

the basis would be wasted. Similar inefficiences occur if ill-conditioning in the QP phase causes
a loss of feasibility.

To avoid these difficulties, the feasibility phase can be modified so that it attempts to reduce
the objective function while simultaneously improving feasibility. The objective function in the
feasibility phase then becomes a composite objective function (a weighted sum of the infeasibilities
and the original quadratic objective function). With this approach, the search direction and
multiplier vector satisfy an KT system similar to (1.6) in both phases. The major difference
between the feasibility and QP iterations is that the steplength a in (1.2) is restricted to ensure
that the number of violated bounds does not increase.

An alternative strategy for the feasibility phase has been suggested in the single-phase meth-
ods of Hoyle (1986). In this case, zo is chosen to satisfy the bound constraints, and each search
direction satisfies a system of the form

(Hrn A;g)(_prn)_(grn) (41)
A T r)’ '
where 7 = 4z — b. Unless r in (4.1) is zero, the general constraints are not satisfied. As soon as
a step a = 1 is taken. r becomes zero, and the iterates thereafter satisfy all the constraints.

Neither of these approaches is completely satisfactory for the SC method. With a composite
objective function, the gradient vector changes in a discrete fashion as variables become feasible
and so must be recomputed at each iteration, which makes it impossible to save the solve with
Ko during the feasibility phase (see Section 3). If we apply the approach based on solving (4.1),
Theorem 1.1 does not apply as long as r is nonzero, and fixing a variable may cause Az to
become rank-deficient. In this situation, special procedures must be invoked to maintain full
rank of the working set.

A composite objective function that seems well suited to the SC method involves solving a QP
subproblem with an additional variable € (the artificial variable) associated with the infeasibilities.
As in the approach of Hoyle, the bound constraints are always satisfied, so that the procedure
may begin with any zo satisfying £ < ¢ < u. Let rg denote the residual b — Az, let the unit
vector s be defined by s = rg/||roll, and let §& = 1. Given a positive weight p, we solve the
modified quadratic program

minimize  pf + ¢’z + 1zTHz

z,§
. (4.2)
subject to (A s)(f):b, f<z<u, 0KEL],

for which (z¢.&o) is feasible. If the artificial variable ever becomes zero, a feasible point has been
found, and £ is thereafter excluded from the problem.

With formulation (4.2), full rank of the initial working set implies full rank in all subsequent
working sets, so that no special procedures are needed to correct for rank deficiency. Further, the
gradient of the composite objective function of (4.2) is a smooth function of z. If p is sufficiently
large, the solution of (4.2) is identical to that of the original problem (1.1).

Note that the “artificial column™ s is almost always dense. Consequently, & is treated as
initially fixed on its upper bound so that it is not included in Kyp. If p is large enough, it is

(LR A\ LI LA AW % e ¥ UG vy e Jai Y § AL)
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12 A Schur-Complement QP Method

f possible to ensure that £ will be the first variable to be freed. The reduced cost for the upper
bound on £ is p — sTm, which exceeds the reduced cost for any remaining non-optimal variable if

v p>sTw+n1ax{|jj—aJTw|:je.7}, (4.3)
! where § = g(zo + p) and J is the index set of non-optimal fixed variables. The lower bound in
(4.3) may be used as an initial estimate of p.
B If the artificial variable ever moves to its lower bound immediately after being freed, the
K Schur complement (a single element) is discarded. This situation often occurs when the artificial
! variable is introduced to rectify infeasibility during the QP phase.
: In any method that relies on a composite objective function, a strategy must be included to
attempt to decide whether no feasible point exists for the original problem (1.1), or whether p
. has not yet become sufficiently large. (No such strategy can ever be guaranteed.) The value of
d p is typically increased if £ > 0 at the solution of (4.2)—for example, p could be multiplied by
i a factor—but eventually the algorithm must “give up” and declare that the constraints of (1.1)
X appear to be infeasible. A strategy that increases p gradually may be inefficient if only a single
‘ QP is solved, since many values of p may be required. When a sequence of related problems is
solved, however, the value of p from one QP is usually a satisfactory choice for the next.
) If no feasible point exists, it is often desirable to locate the minimium sum of infeasibilities.
‘_ Although the solution of (4.2) does minimize a weighted sum of infeasibilities if p is large enough,
'. the weights are essentially arbitrary (since they depend on the initial point).
. 5. Computing the Initial Factorization
t The matrix Ko is represented by its symmetric indefinite factorization (see, e.g., Bunch and
- Parlett, 1971, and Bunch and Kaufman, 1977):
Ko = LDLT, (5.1)
)
\ where L is lower triangular and D is block diagonal, with 1 X 1 or 2 x 2 blocks. (The latter are
; required to retain numerical stability.)
! An effective and widely used implementation of (5.1) for sparse matrices is the Harwell
routine MA27 (Duff and Reid, 1982), which is a three-phase method. The ANALYZE phase is
. purely symbolic (i.e., uses only the sparsity pattern of Ky), and applies a version of the minimum-
9 degree algorithm intended to define a symmetric ordering that produces low fill-in in L. In the
L, subsequent FACTORIZE phase, the numerical factors (5.1) are computed using the actual entries
0 in Ko ordered as prescribed by ANALYZE, with further symmetric interchanges performed if
! necessary for numerical stability. Finally, the solution of Kpr = b is computed in the SOLVE
phase.
y, 5.1. A specialized ANALYZE phase. The direct application of MA27 is very effective for
: problems in which H is sparse and there are few general constraints (i.e., m is small relative
to n). Many problems in statistics have this feature, since they require nonnegativity of all
P variables, with the single general constraint ), x; = 1. KT systems with small m are best
3 handled by applying the ANALYZE phase to the matrix I/ only. A suitable ordering for the full
2 KT system may then be determined by expanding the data structure to include the constraint
:
U

BAAO AL I AL A UGS AL A S I DAL : AV (g NN 5 A 3 ittty oW ettt e T et L
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5. Computing the Initial Factorization 13

rows and columns. If all the 1 X 1 pivots are numerically acceptable in the FACTORIZE phase,
the first search direction and multiplier vector would satisfy the range-space equations:

AZ“RH;‘-RIAFRW = AZ“RH;nlgm and Hppper = A:u"r ~9rr (5.2)

(see, e.g., Gill et al., 1982). In practice, some 1 x 1 pivots may be rejected—for example, any
pivot corresponding to a free slack variable. However, if m is not too large, the symbolic ordering
for Hgy is still likely to provide a numerically stable factorization.

When m is not small relative to n, the rows of Ar; must be included in the ANALYZE
phase. Unfortunately, the minimum-degree algorithm assumes that no 2 x 2 pivots occur during
the factorization, and hence that the diagonal elements of Ky are nonzero. Since Ky always has
a zero diagonal block in the lower right-hand corner, the symbolic ordering from ANALYZE is
often changed substantially during the FACTORIZE phase. In some cases, the resulting additional
fill-in increases the work required to operate with the factors. The problem is exacerbated if zero
diagonal elements occur within H—for example, the diagonals corresponding to slack variables.

In our experience with large m, an increase in fill-in compared to the predicted level has
occurred consistently, even when all the diagonals of H are nonzero. A possible explanation is
that the number of nonzeros in a given row of Ay is likely to be less than the total number
of nonzeros in a given row of H,; and the corresponding column of Ar,. Consequently, the
minimum-degree algorithm may well choose an ordering with many zero diagonals. The root of
the difficulty seems to be the persistence of zero diagonal pivots in the reduced matrix.

The special treatment of zero diagonal elements during the minimum-degree ordering will be
incorporated in a new version of MA27 (Duff, private communication). However, the efficiency
of the current version of MA27 on KT systems may be significantly improved in some cases by
utilizing the facility of MA27 to accept a preassigned ordering for the FACTORIZE. Let T denote
a 2 x 2 matrix (called a tile) of the form

= (1 ), (53)

a

where 4 is an element of H, and a and d are elements of A. A symmetric tile has the useful property
that it is nonsingular if a is nonzero; moreover, its nonzero eigenvalues must have opposite sign.
Our ordering strategy is to define a permutation matrix IT such that the upper left-hand corner
of a symmetrically permuted version of Ky consists of a symmetric “checkerboard” matrix T of
tiles, i.e.,

T FT
M=1ITKyl = , 5.4
to (F E ) (5.4)
where T has the form
Thnw T Tas

TL T Tan
T=115 15 15

[
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14 A Schur-Complement QP Method

Each tile (5.3) is essentially a pairing of a column of I! with a column of A. For example, when
T is 4 X 4, one possible arrangement is

hn asy his an
a2 Q23

T =
hiz a2 has a3
an a3

Once an element q;; is selected for a diagonal tile Ty,, the elements of column j of A become
entries of the off-diagonal tiles Ty, where p = 1,2,...,q — 1. The remaining elements in row 1 of
A become ineligible for inclusion in diagonal tiles.

In the proposed method, the sparsity pattern of Al in (5.4) is first processed by a minimum-
degree ordering that treats each tile in T as a single element that is nonzero if and only if the tile
is a nonzero matrix. A suitable ordering for the full matrix is then determined by expanding the
data structure to consider each tile as a 2 x 2 matrix. The idea is to force MA27 to use a pivot
strategy contrary to that typically used in the Bunch-Parlett algorithm—i.e., instead of choosing
2 x 2 pivots only when no suitable diagonal pivots are available, 2 x 2 pivots are preferred.

Arranging the Hessian and general constraints of (1.6) into tiles is a very effective method
for dealing with slack variables. If all free slacks are picked first for inclusion in the diagonal tiles,
the associated 2 x 2 pivots cause no fill-in during the symmetric indefinite factorization.

Many real-world problems have the desirable feature that a “natural” pairing of columns of
H and A is suggested by the nature of the underlying physical system. By applying the above
technique in the ANALYZE phase, fill-in during the factorization may be substantially reduced
compared to an application of MA27 alone. In Table 1 we give some factorization statistics
obtained from applying the tiling strategy to solve QP subproblems arising in the optimal dis-
tribution of electrical power (Burchett, Happ and Vierath, 1984). For each problem we give the
dimension of the projected Hessian, the dimension of the KT system, the number of nonzeros in
Ko, the number of elements in L predicted by the ANALYZE, and the actual number of nonzeros
generated during the FACTORIZE.

Table 1
Factorization statistics for various KT systems

dim(Ky) dim(ZTHZ) Ky ANALYZE FACTORIZE

1840 56 13593 33486 34676

2018 266 17025 37614 38458

2105 219 13858 38696 38700
g 5841 1 31697 63278 69323
'.S 5997 157 33399 65170 69620
R There is a clear need for a general procedure that will find a suitable tiling for an arbitrary
p sparse KT system. Given any 2m x 2m tiled matrix T, there exists a permutation /T such that
: T=A7TH = (g BT), (5.5)
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‘
*
! where B is an m X m subset of the columns of A. Since A has full rank, there must exist
i permutations IT and IT for which B is nonsingular. Hence there must exist at least one tiling
K such that T is nonsingular. Finding a “good” set of columns from A is very similar to the
! problem of choosing a nonsingular basis. Because the selected columns of A automatically define
Y the rows and columns of H to be used in T, the “best” arrangement will minimize the number
b of nonzero tiles. Once an initial T matrix has been chosen, updating T should be relatively
easy when refactorization is required. In particular, no change is necessary if none of the free
"' variables corresponding to the selected columns of H has become fixed. This property implies
o) that construction of the tiles should favor columns of H that are likely to remain free.
1)
b 5.2. Relationship between methods. If the KT system is solved by taking pivots from
' H . first, the symmetric indefinite factorization implicitly forms matrices that define the class
of range-space methods (cf. (5.2)). The following theorem shows that a different pivot order will
L
cause the symmetric indefinite factorization to form matrices associated with the reduced-gradient
method.
&
:: Lemma 5.1. Define two matrices M and M such that
4
] — -
‘ G FT - G FT
. M:( ) and M:(- ),
Y where (i and (G are k x k and nonsingular, and M is obtained from M by performing symmetric
1 permutations of the first k rows and columns. Then M /G = M|G. 1
1
Theorem 5.1. Assume without loss of generality that Hrp, and Arg may be partitioned so that
H, G’T)
Hip = and Apr=(B S5},
FR ( G 112 FR ( 7
where I3 and Hy are m x m with B nonsingular. Let T denote a 2m x 2m tiled matrix formed
. from elements of Hy and B. If M denotes the permuted KT system (5.4) then
-B-1§
. MIT=2"11Z, where Z= I
; 0
) |
Proof. Let M and T denote the matrices
= Hy BT G
z ‘ , . (Hm BT
M=1] B S and T = .
N ) ” B
ot st on,
{
2 Then by definition,
: . o G . V
:{ MIT =Hy—(GT sT)7-! ( f) =, - (GT ST )( ‘). (5.6)
N b Va
'

where V7 and V; are defined by the (block-triangular) equations

& I, nr Vi G

K =1 (5.7)
" b ‘/2 h)

.‘

‘
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o
N Substituting for V} and V3 from (5.7) into (5.6), we obtain
Y M/T=1H-GTB'S-S"B"TG+S"B~TILB~'S

Ay
A m G\ (-B7'S ‘

~ =(-STB-T 1)( P )( )=Z7IIZ.
N G H, I

-

The result now follows from Lemma 5.1. §
..; This result implies that the symmetric indefinite factorization, when used in conjunction with
B a nousingular tiling. implicitly forms and factorizes the projected Hessian. Moreover, ZTH Z is
B ) computed in a way that exploits symmetry. In situations when the projected Hessian is sparse, the
i symmetric indefinite factorization thus provides an effective means of exploiting sparsity during
the factorization.

W, In general, direct factorization of the KT system provides the opportunity to define a set of
o methods for the large-scale case, with each method determined by the order of the columns in
e the initial KT factorization.
r'

. 6. Formulation of the Constraints

: in this section we discuss two aspects of the occasional inefficiency resulting from use of the
- standard form (1.1).

a2 6.1. Treatment of slacks in the standard form. In the Schur-complement algorithm, each
’ free slack column adds a unit row and column to K, so that symmetric interchanges cannot
o move the corresponding unit element to the diagonal. In order to avoid unnecessary fill-in during
! : the initial factorization, the two (unit) nonzeros associated with each slack must be formed into
ﬁ) a 2 x 2 tile as described in Section 5. If there are & free slacks, Ayz is of the form
" A ( Ay ) (6.1)

FR = . .
. \Mr Az
o where I is the identity of order A. With suitable permutation, the associated KT system has the
-. form
: h
‘ K Ik A2 (6.2)
\g = J.
AT H, AT

‘.

N M

.

A trivial sequence of interchanges in the leading 2k X 2k rows and columns of (6.2) gives the
required tiling, with & matrices
1
()

on the principal diagonal. If 2 x 2 pivots are selected from the diagonal, no additional fill-in
occurs in the leading 2k columns. Ideally, a symmetric indefinite solver such as MA27 should
treat singleton rows and columns in this way.

.2, neral inequalities. Constraints sometimes arise “natur in the form
6.2. Ge 1 ualit ‘onst t t “naturally” in the fo

(5(/1‘)1311. (6.3)
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7. Discusston 17

In an active-set method based on (6.3), the working-set matrix undergoes both row and col-
umn changes. For sparse problems, few authors have considered the associated complications of
updating sparse factors that vary in dimension. (See Gill et al., 1987a, for an exception.)

In contrast, the Schur-complement method may be generalized quite readily to problems
with constraints of the form (6.3). The equations associated with each iteration are identical to
(1.6). except that A, is effectively just the submatrix Ay in (6.1). If a general constraint with
gradient « is added to the working set, the KT system is bordered by a vector made up from the
free elements of a.

The update for deletion of a general constraint from the working set can be illustrated easily
for the first iteration. If the constraint to be deleted corresponds to the s-th row of A, the
search direction satisfies the bordered system

Heg f‘;{'n ~Drr grr
A €s T = .
H -1

where v may be discarded. The Lagrange multipliers for the general constraints in the working
set may be recovered by deleting the s-th element of .

Since Apx must be maintained subject to both row and column updates, it is necessary to
access A by both rows and columns. In the case of linear programming, if m < n the standard
form is efficient (and requires only column updates), while if m 3> n one may prefer to solve the
dual problem, again in standard form. However, once the form (6.3) is assumed, efficiency can be
retained regardless of the ratio of m to n. This advantage is all the more important for nonlinear
problems, where the device of solving the dual is not necessarily applicable or efficient.

7. Discussion

An important feature of the Schur-complement approach is that any advances in methods for
sparse linear equations are immediately applicable to computation of the initial factorization of
K. This approach is especially effective when K has special structure that can be exploited in a
“black box™ equation solver--e.g., when the constraints are derived from network flow problems.

Many new machines have become available in recent years with vector and/or parallel ca-
pabilities. Tu most cases, the novelty of their architecture is not exploited by existing software.
In the large-scale mathematical programming area, a portable Fortran code (e.g., MINOS, SCI-
CONIC) will run successfully on vector machines like the CRAY-1 or CRAY-XMP, but most of
the computation will be performed only in scalar mode.

It can be expected that sparse linear equation solvers will eventually be developed for novel
machines intended for scientific computation. While explicit updating of LU factors will probably
remain efficient on conventional machines (see Gill et al., 1987a), the Schur-complement approach
is likely to provide the most effective method for machines with advanced architectures. In the
case of vector supercomputers, techniques have already been developed that allow large lincar
systemas to be solved efficiently (see Ashceraft et al., 1987). We therefore believe that the efficient
solution of large quadratic programming problems on vector machines is now feasible.

The Schur-complement method described here has been implemented within an SQP method
and applied to the solution of optimal power flow (OPF) problems arising in the clectrical power
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18 A Schur-Complement QP Method

industry. OPF problems concern the optimal generation and distribution of electrical power in
a network (see Stott, Alsac and Marinho, 1980). Exact second derivatives are available for these
problems. and a specialized Newton-based SQP method has been applied with great success to
general OPF problems of a size previously considered intractable.
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